विद्या सर्वार्थ साधिका

ANANDALAYA
MID TERM EXAMINATION

Class: XII

Subject: Mathematics Date : 23/09/2019 M.M: 80 Time: 3 Hours

General Instructions:

- i) All questions are compulsory.
- ii) This question paper contains 36 questions.
- iii) Questions 1- 20 in Section A are very short-answer type questions carrying 1 mark each.
- iv) Questions 21 26 in Section B are short-answer type questions carrying 2 marks each.
- v) Questions 27 32 in Section C are long-answer I type questions carrying 4 marks each.
- vi) Questions 33 36 in Section D is long-answer II type questions carrying 6 marks.

SECTION-A

1. The roots of the equation
$$\begin{vmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{vmatrix} = 0$$
 are

(a) 1, 2 (b) -1, 2 (c) 1, -2 (d) -1, -2

2. The value of
$$\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4} is$$
_____ (1)

(a)
$$\frac{\pi}{2}$$
 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) π

3.
$$\int_{0}^{\pi} \frac{dx}{1 + \sin x} =$$
(1)
(a) 0 (b) ½ (c) 2 (d) 3/2

4. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$
, then $(A^2 - 5A) A^{-1} = \underline{\hspace{1cm}}$

(a) $\begin{bmatrix} 4 & 2 & 3 \\ -1 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

(b) $\begin{bmatrix} 4 & 2 & 3 \\ -1 & -4 & 2 \\ 1 & 2 & -1 \end{bmatrix}$

(c) $\begin{bmatrix} -4 & -1 & 1 \\ 2 & -4 & 2 \\ 3 & 2 & -1 \end{bmatrix}$

(d) $\begin{bmatrix} -1 & -2 & 1 \\ 4 & -2 & -3 \\ 1 & 4 & -2 \end{bmatrix}$

5. Let
$$f(x) = x^3$$
 and $g(x) = 3^x$. The values of a such that $g(f(a)) = f(g(a))$ are
(a) 0, 2
(b) 1, 3
(c) 0, $\pm \sqrt{3}$
(d) 1, ± 2

6.
$$\int x^{51} (\tan^{-1} x + \cot^{-1} x) dx = \underline{\qquad}$$
(a)
$$\frac{x^{52}}{52} (\tan^{-1} x + \cot^{-1} x) + c$$
(b)
$$\frac{x^{52}}{52} (\tan^{-1} x - \cot^{-1} x) + c$$
(c)
$$\frac{\pi x^{52}}{104} + \frac{\pi}{2} + c$$
(d)
$$\frac{x^{52}}{52} + \frac{\pi}{2} + c$$

8.
$$\int \frac{dx}{(1+e^{x})(1+e^{-x})} =$$
(a) $\frac{-1}{1+e^{x}}$ (b) $\frac{e^{x}}{1+e^{x}}$ (c) $\frac{1}{1+e^{x}}$ (d) none of these

9. In the following question, Statement – 1 is followed by Statement – 2. Mark the correct choice as: (1) Statement – 1 : $\int \frac{1}{4e^{-x} - 9e^x} dx = \frac{1}{6} \log \left| \frac{2 + 3e^x}{2 - 3e^x} \right| + c$

Statement $-2: \int \frac{1}{a^2-x^2} dx = \frac{1}{2a} \log \left| \frac{a+x}{a-x} \right| + c$

- (a) Statement -1 is true, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
- (b) Statement -1 is true, Statement -2 is true, Statement -2 is not a correct explanation for Statement -1.
- (c) Statement -1 is true, Statement -2 is false.
- (d) Statement -1 is false, Statement -2 is true.
- 10. In the following question, Statement 1 is followed by Statement 2. Mark the correct choice as: (1) Statement 1: The function $f(x) = x^3 3x^2 + 12x$ is increasing on R.

Statement -2: If a differentiable function g(x) is increasing implies g'(x) > 0.

- (a) Statement -1 is true, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
- (b) Statement -1 is true, Statement -2 is true, Statement -2 is not a correct explanation for Statement -1.
- (c) Statement -1 is true, Statement -2 is false.
- (d) Statement -1 is false, Statement -2 is true.
- 11. Let N be the set of natural numbers and relation R on N be defined by $R = \{(x, y): x, y \in N, x + 4y = 10\}$. Determine whether the above relation is reflexive, symmetric. (1)

12. If
$$y = 9^{\log_3 x}$$
, show that $\frac{dy}{dx} = 2x$. (1)

13. If
$$\tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5}$$
 then find $\cot^{-1} x + \cot^{-1} y$. (1)

14. Evaluate:
$$\sin^{-1}(\sin \mathbb{Z} - 600^{\circ})$$
). (1)

16. Find the integral value(s) of x if
$$\begin{vmatrix} x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4 \end{vmatrix} = 28.$$
 (1)

- 17. If x changes from 4 to 4.01, then find the approximate change in $\log_e x$. (1)
- 18. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x^2 + 1$. Find the value of $f^{-1}\{37\}$. (1)

19. Find the value of x and y, given that
$$\begin{bmatrix} x & y \\ 3y & x \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
. (1)

20. Differentiate
$$\sin^2 x$$
 with respect to $e^{\cos x}$. (1)

SECTION-B

21. If
$$f(x) = \sqrt{x^2 + 1}$$
; $g(x) = \frac{x+1}{x^2+1}$ and $h(x) = 2x - 3$, then find $f'[h'\{g'(x)\}]$. (2)

22. If
$$A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$$
, find the value of x and y such that $A^2 + xI_2 = yA$.

OR

If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, find a and b .

23. Find the points on the curve
$$x^2 + y^2 - 2x - 3 = 0$$
 at which the tangents are parallel to x – axis. (2)

24. If
$$y = (x + \sqrt{1 + x^2})^n$$
, then show that $(1 + x^2)\frac{d^2y}{dx^2} + x \frac{dy}{dx} = n^2y$. (2)

Differentiate the function $\sin^{-1}\left(\frac{2^{x+1}}{1+A^x}\right)$ with respect to x.

25. Find the maximum and minimum values of the function
$$f$$
 given by $f(x) = \sin x + \cos x$. (2)

OR

Find the intervals in which the function $f(x) = 2x^3 - 15x^2 + 36x + 1$ is strictly increasing or decreasing. Also find the points on which the tangents are parallel to $x - axis$.

26. Evaluate:
$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{(1+\tan x)(2+\tan x)} dx.$$
 (2)

SECTION - C

27. Let
$$A = \begin{bmatrix} 1 & -2 \\ 5 & 4 \\ 3 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 1 \\ 0 & 2 \\ -3 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 3 \\ -2 & 2 \\ 1 & 6 \end{bmatrix}$. Verify that $(A + B) + C = A + (B + C)$. (4)

28. Prove that:
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right) = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2$$
. OR

Prove that $\tan^{-1}\frac{yz}{xr} + \tan^{-1}\frac{zx}{yr} + \tan^{-1}\frac{xy}{zr} = \frac{\pi}{2}$, where x, y, z > 0 such that $x^2 + y^2 + z^2 = r^2$.

29. Verify Langange's mean value theorem for
$$f(x) = \sqrt{x^2 - x}$$
 in [1, 4].

30. By using properties of determinants, prove that :
$$\begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 2x \end{vmatrix} = 2 + 4\sin 2x.$$
OR

By using properties of determinants, prove that:

$$\begin{vmatrix} a^{2} + 1 & ab & ac \\ ba & b^{2} + 1 & bc \\ ca & cb & c^{2} + 1 \end{vmatrix} = a^{2} + b^{2} + c^{2} + 1.$$

31. Prove that
$$\sin x (1 + \cos x)$$
 has a maximum value for $x = \frac{\pi}{3}$. (4)

32. Evaluate: $\int_0^1 \frac{x e^x}{(x+1)^2} dx$. (4)

OR

Evaluate: $\int \frac{1}{\sqrt{2x+3} + \sqrt{2x-3}} dx.$

SECTION-D

33. Let N be the set of all natural numbers and let R be a relation in N, defined by $R = \{(a, b): a \text{ is a multiple of } b\}$. Show that R is reflexive and transitive but not symmetric.

OR
Let $A = R - \left\{\frac{3}{5}\right\}$ and $B = R - \left\{\frac{7}{5}\right\}$ let $f: A \to B: f(x) = \frac{7x+4}{5x-3}$ and $g: B \to A: g(y) = \frac{3y+4}{5y-4}$.

Show that $(gof) = I_A$ and $(fog) = I_B$.

- 34. Evaluate: $\int_{1}^{3} (2x^2 + 3) dx$ as limit of sums. (6)
- 35. Find A^{-1} , where $A = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}$. Hence solve the system of equations: 4x + 2y + 3z = 2, x + y + z = 1, 3x + y 2z = 5.OR
 If $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{bmatrix}$, find $(A')^{-1}$.
- 36. Show that the semi vertical angle of a cone of maximum volume and given slant height is $\tan^{-1} \sqrt{2}$. (6)